PINE LIBRARY
LinearRegressionLibrary

Library "LinearRegressionLibrary" contains functions for fitting a regression line to the time series by means of different models, as well as functions for estimating the accuracy of the fit.
Linear regression algorithms:
RepeatedMedian(y, n, lastBar) applies repeated median regression (robust linear regression algorithm) to the input time series within the selected interval.
Parameters:
Output:
TheilSen(y, n, lastBar) applies the Theil-Sen estimator (robust linear regression algorithm) to the input time series within the selected interval.
Parameters:
Output:
OrdinaryLeastSquares(y, n, lastBar) applies the ordinary least squares regression (non-robust) to the input time series within the selected interval.
Parameters:
Output:
Model performance metrics:
metricRMSE(y, n, lastBar, slope, intercept) returns the Root-Mean-Square Error (RMSE) of the regression. The better the model, the lower the RMSE.
Parameters:
Output:
metricMAE(y, n, lastBar, slope, intercept) returns the Mean Absolute Error (MAE) of the regression. MAE is is similar to RMSE but is less sensitive to outliers. The better the model, the lower the MAE.
Parameters:
Output:
metricR2(y, n, lastBar, slope, intercept) returns the coefficient of determination (R squared) of the regression. The better the linear regression fits the data (compared to the sample mean), the closer the value of the R squared is to 1.
Parameters:
Output:
Usage example:
//version=5
indicator('ExampleLinReg', overlay=true)
// import the library
import tbiktag/LinearRegressionLibrary/1 as linreg
// define the studied interval: last 100 bars
int Npoints = 100
int lastBar = bar_index
int firstBar = bar_index - Npoints
// apply repeated median regression to the closing price time series within the specified interval
{square bracket}slope, intercept{square bracket} = linreg.RepeatedMedian(close, Npoints, lastBar)
// calculate the root-mean-square error of the obtained linear fit
rmse = linreg.metricRMSE(close, Npoints, lastBar, slope, intercept)
// plot the line and print the RMSE value
float y1 = intercept
float y2 = intercept + slope * (Npoints - 1)
if barstate.islast
{indent} line.new(firstBar,y1, lastBar,y2)
{indent} label.new(lastBar,y2,text='RMSE = '+str.format("{0,number,#.#}", rmse))
Linear regression algorithms:
RepeatedMedian(y, n, lastBar) applies repeated median regression (robust linear regression algorithm) to the input time series within the selected interval.
Parameters:
- y :: float series, source time series (e.g. close)
- n :: integer, the length of the selected time interval
- lastBar :: integer, index of the last bar of the selected time interval (defines the position of the interval)
Output:
- mSlope :: float, slope of the regression line
- mInter :: float, intercept of the regression line
TheilSen(y, n, lastBar) applies the Theil-Sen estimator (robust linear regression algorithm) to the input time series within the selected interval.
Parameters:
- y :: float series, source time series
- n :: integer, the length of the selected time interval
- lastBar :: integer, index of the last bar of the selected time interval (defines the position of the interval)
Output:
- tsSlope :: float, slope of the regression line
- tsInter :: float, intercept of the regression line
OrdinaryLeastSquares(y, n, lastBar) applies the ordinary least squares regression (non-robust) to the input time series within the selected interval.
Parameters:
- y :: float series, source time series
- n :: integer, the length of the selected time interval
- lastBar :: integer, index of the last bar of the selected time interval (defines the position of the interval)
Output:
- olsSlope :: float, slope of the regression line
- olsInter :: float, intercept of the regression line
Model performance metrics:
metricRMSE(y, n, lastBar, slope, intercept) returns the Root-Mean-Square Error (RMSE) of the regression. The better the model, the lower the RMSE.
Parameters:
- y :: float series, source time series (e.g. close)
- n :: integer, the length of the selected time interval
- lastBar :: integer, index of the last bar of the selected time interval (defines the position of the interval)
- slope :: float, slope of the evaluated linear regression line
- intercept :: float, intercept of the evaluated linear regression line
Output:
- rmse :: float, RMSE value
metricMAE(y, n, lastBar, slope, intercept) returns the Mean Absolute Error (MAE) of the regression. MAE is is similar to RMSE but is less sensitive to outliers. The better the model, the lower the MAE.
Parameters:
- y :: float series, source time series
- n :: integer, the length of the selected time interval
- lastBar :: integer, index of the last bar of the selected time interval (defines the position of the interval)
- slope :: float, slope of the evaluated linear regression line
- intercept :: float, intercept of the evaluated linear regression line
Output:
- mae :: float, MAE value
metricR2(y, n, lastBar, slope, intercept) returns the coefficient of determination (R squared) of the regression. The better the linear regression fits the data (compared to the sample mean), the closer the value of the R squared is to 1.
Parameters:
- y :: float series, source time series
- n :: integer, the length of the selected time interval
- lastBar :: integer, index of the last bar of the selected time interval (defines the position of the interval)
- slope :: float, slope of the evaluated linear regression line
- intercept :: float, intercept of the evaluated linear regression line
Output:
- Rsq :: float, R-sqared score
Usage example:
//version=5
indicator('ExampleLinReg', overlay=true)
// import the library
import tbiktag/LinearRegressionLibrary/1 as linreg
// define the studied interval: last 100 bars
int Npoints = 100
int lastBar = bar_index
int firstBar = bar_index - Npoints
// apply repeated median regression to the closing price time series within the specified interval
{square bracket}slope, intercept{square bracket} = linreg.RepeatedMedian(close, Npoints, lastBar)
// calculate the root-mean-square error of the obtained linear fit
rmse = linreg.metricRMSE(close, Npoints, lastBar, slope, intercept)
// plot the line and print the RMSE value
float y1 = intercept
float y2 = intercept + slope * (Npoints - 1)
if barstate.islast
{indent} line.new(firstBar,y1, lastBar,y2)
{indent} label.new(lastBar,y2,text='RMSE = '+str.format("{0,number,#.#}", rmse))
Pine腳本庫
秉持TradingView一貫精神,作者已將此Pine代碼以開源函式庫形式發佈,方便我們社群中的其他Pine程式設計師重複使用。向作者致敬!您可以在私人專案或其他開源發表中使用此函式庫,但在公開發表中重用此代碼須遵守社群規範。
免責聲明
這些資訊和出版物並非旨在提供,也不構成TradingView提供或認可的任何形式的財務、投資、交易或其他類型的建議或推薦。請閱讀使用條款以了解更多資訊。
Pine腳本庫
秉持TradingView一貫精神,作者已將此Pine代碼以開源函式庫形式發佈,方便我們社群中的其他Pine程式設計師重複使用。向作者致敬!您可以在私人專案或其他開源發表中使用此函式庫,但在公開發表中重用此代碼須遵守社群規範。
免責聲明
這些資訊和出版物並非旨在提供,也不構成TradingView提供或認可的任何形式的財務、投資、交易或其他類型的建議或推薦。請閱讀使用條款以了解更多資訊。