PINE LIBRARY

cbnd

Library "cbnd"

Description:
A standalone Cumulative Bivariate Normal Distribution (CBND) functions that do not require any external libraries.
This includes 3 different CBND calculations: Drezner(1978), Drezner and Wesolowsky (1990), and Genz (2004)

Comments:
The standardized cumulative normal distribution function returns the probability that one random
variable is less than a and that a second random variable is less than b when the correlation
between the two variables is p. Since no closed-form solution exists for the bivariate cumulative
normal distribution, we present three approximations. The first one is the well-known
Drezner (1978) algorithm. The second one is the more efficient Drezner and Wesolowsky (1990)
algorithm. The third is the Genz (2004) algorithm, which is the most accurate one and therefore
our recommended algorithm. West (2005b) and Agca and Chance (2003) discuss the speed and
accuracy of bivariate normal distribution approximations for use in option pricing in
ore detail.

Reference:
The Complete Guide to Option Pricing Formulas, 2nd ed. (Espen Gaarder Haug)

CBND1(A, b, rho)
  Returns the Cumulative Bivariate Normal Distribution (CBND) using Drezner 1978 Algorithm
  Parameters:
    A: float,
    b: float,
    rho: float,
  Returns: float.

CBND2(A, b, rho)
  Returns the Cumulative Bivariate Normal Distribution (CBND) using Drezner and Wesolowsky (1990) function
  Parameters:
    A: float,
    b: float,
    rho: float,
  Returns: float.

CBND3(x, y, rho)
  Returns the Cumulative Bivariate Normal Distribution (CBND) using Genz (2004) algorithm (this is the preferred method)
  Parameters:
    x: float,
    y: float,
    rho: float,
  Returns: float.
CBNDcumulativebivariatenormaldistributioncumulativenormaldistributionhaugoptionspricingstatistics

Pine腳本庫

在真正的TradingView精神中,作者將這段Pine程式碼發佈為開源程式庫,以便我們社群的其他Pine程式設計師可以重複使用它。請向作者致敬!您可以私下使用這個函式庫,或在其他開源出版品中使用,但在出版物中再次使用這段程式碼將受到網站規則的約束。


Public Telegram Group, t.me/algxtrading_public

VIP Membership Info: patreon.com/algxtrading/membership
更多:

免責聲明