LazyBear

Indicator: Schaff Trend Cycle (STC)

Another new indicator for TV community :)

STC detects up and down trends long before the MACD . It does this by using the same exponential moving averages (EMAs), but adds a cycle component to factor instrument cycle trends. STC gives more accuracy and reliability than the MACD .

More info: http://www.investopedia.com/articles/for...

Feel free to "Make mine" this chart and use the indicator in your charts. Appreciate any feedback on how effective this is for your instrument (I have tested this only with BTC ).



For people trading BTC:
-------------------------------

Try 3/10 or 9/30 for MACD (fastLength/slowLength). They seem to catch the cycles better than the defaults. :)

List of my free indicators: http://bit.ly/1LQaPK8
List of my indicators at Appstore: http://blog.tradingview.com/?p=970
開源腳本

本著真正的TradingView精神,該腳本的作者將其開源發布,以便交易者可以理解和驗證它。為作者喝彩吧!您可以免費使用它,但在出版物中重複使用此代碼受網站規則的約束。 您可以收藏它以在圖表上使用。

免責聲明

這些資訊和出版物並不意味著也不構成TradingView提供或認可的金融、投資、交易或其他類型的意見或建議。請在使用條款閱讀更多資訊。

想在圖表上使用此腳本?
//
// @author LazyBear
// If you use modify / use this code, appreciate if you could drop me a note. 
// 
study(title="Schaff Trend Cycle [LazyBear]", shorttitle="STC_LB", overlay=true)
length=input(10)
fastLength=input(23)
slowLength=input(50)
macd(source, fastLength, slowLength) =>
    fastMA = ema(source, fastLength)
    slowMA = ema(source, slowLength)
    macd = fastMA - slowMA
    macd
    

stc(length, fastLength, slowLength) => 
    factor=input(0.5)  
    m = macd(close,fastLength,slowLength)     
    v1 = lowest(m, length)
    v2 = highest(m, length) - v1    
    f1 = (v2 > 0 ? ((m - v1) / v2) * 100 : nz(f1[1])) 
    pf = (na(pf[1]) ? f1 : pf[1] + (factor * (f1 - pf[1]))) 
    v3 = lowest(pf, length) 
    v4 = highest(pf, length) - v3     
    f2 = (v4 > 0 ? ((pf - v3) / v4) * 100 : nz(f2[1])) 
    pff = (na(pff[1]) ? f2 : pff[1] + (factor * (f2 - pff[1])))
    pff

plot(stc(length,fastLength,slowLength),color=red, title="Schaff_TC")
//
// Uncomment the lines below if you want the center region
//
// ul=plot(25)
// ll=plot(75) 
// fill(ul,ll,color=red)