This is a tool / library for developers, that contains several common and adapted kernel functions as well as a kernel regression function and enum to easily select and embed a list into the settings dialog.
How to Choose and Modify Kernels in Practice
Compact Support Kernels (e.g., Epanechnikov, Triangular): Use for localized smoothing and emphasizing nearby data.
Oscillatory Kernels (e.g., Wave, Cosine): Ideal for detecting periodic patterns or mean-reverting behavior.
Smooth Tapering Kernels (e.g., Gaussian, Logistic): Use for smoothing long-term trends or identifying global price behavior.
kernel_Epanechnikov(u) Parameters: u (float)
kernel_Epanechnikov_alt(u, sensitivity) Parameters: u (float) sensitivity (float)
kernel_Triangular(u) Parameters: u (float)
kernel_Triangular_alt(u, sensitivity) Parameters: u (float) sensitivity (float)
kernel_Rectangular(u) Parameters: u (float)
kernel_Uniform(u) Parameters: u (float)
kernel_Uniform_alt(u, sensitivity) Parameters: u (float) sensitivity (float)
kernel_Logistic(u) Parameters: u (float)
kernel_Logistic_alt(u) Parameters: u (float)
kernel_Logistic_alt2(u, sigmoid_steepness) Parameters: u (float) sigmoid_steepness (float)
kernel_Gaussian(u) Parameters: u (float)
kernel_Gaussian_alt(u, sensitivity) Parameters: u (float) sensitivity (float)
kernel_Silverman(u) Parameters: u (float)
kernel_Quartic(u) Parameters: u (float)
kernel_Quartic_alt(u, sensitivity) Parameters: u (float) sensitivity (float)
kernel_Biweight(u) Parameters: u (float)
kernel_Triweight(u) Parameters: u (float)
kernel_Sinc(u) Parameters: u (float)
kernel_Wave(u) Parameters: u (float)
kernel_Wave_alt(u) Parameters: u (float)
kernel_Cosine(u) Parameters: u (float)
kernel_Cosine_alt(u, sensitivity) Parameters: u (float) sensitivity (float)
kernel(u, select, alt_modificator) wrapper for all standard kernel functions, see enum Kernel comments and function descriptions for usage szenarios and parameters Parameters: u (float) select (series Kernel) alt_modificator (float)
kernel_regression(src, bandwidth, kernel, exponential_distance, alt_modificator) wrapper for kernel regression with all standard kernel functions, see enum Kernel comments for usage szenarios. performance optimized version using fixed bandwidth and target Parameters: src (float): input data series bandwidth (simple int): sample window of nearest neighbours for the kernel to process kernel (simple Kernel): type of Kernel to use for processing, see Kernel enum or respective functions for more details exponential_distance (simple bool): if true this puts more emphasis on local / more recent values alt_modificator (float): see kernel functions for parameter descriptions. Mostly used to pronounce emphasis on local values or introduce a decay/dampening to the kernel output