Inputs
ALPHATOTAL1Library "ALPHATOTAL1"
TODO: add library description here
alpha(beta, asset)
Parameters:
beta (float)
asset (float)
BetaTOTAL1Library "BetaTOTAL1"
TODO: add library description here
beta(x, y)
Parameters:
x (int)
y (float)
BetaTOTALLibrary "BetaTOTAL"
TODO: add library description here
fun(x, y)
Parameters:
x (int)
y (string)
TimezoneLibrary with pre-defined timezone enums that can be used to request a timezone input from the user. The library provides a `tostring()` function to convert enum values to a valid string that can be used as a `timezone` parameter in pine script built-in functions. The library also includes a bonus function to get a formatted UTC offset from a UNIX timestamp.
The timezone enums in this library were compiled by referencing the available timezone options from TradingView chart settings as well as multiple Wikipedia articles relating to lists of time zones.
Some enums from this library are used to retrieve an IANA time zone identifier, while other enums only use UTC/GMT offset notation. It is important to note that the Pine Script User Manual recommends using IANA notation in most cases.
HOW TO USE
This library is intended to be used by Pine Coders who wish to provide their users with a simple way to input a timezone. Using this library is as easy as 1, 2, 3:
Step 1
Import the library into your script. Replace with the latest available version number for this library.
//@version=6
indicator("Example")
import n00btraders/Timezone/ as tz
Step 2
Select one of the available enums from the library and use it as an input. Tip: view the library source code and scroll through the enums at the top to find the best choice for your script.
timezoneInput = input.enum(tz.TimezoneID.EXCHANGE, "Timezone")
Step 3
Convert the user-selected input into a valid string that can be used in one of the pine script built-in functions that have a `timezone` parameter.
string timezone = tz.tostring(timezoneInput)
EXPORTED FUNCTIONS
There are multiple 𝚝𝚘𝚜𝚝𝚛𝚒𝚗𝚐() functions in this library: one for each timezone enum. The function takes a single parameter: any enum field from one of the available timezone enums that are exported by this library. Depending on the selected enum, the function will return a time zone string in either UTC/GMT notation or IANA notation.
Note: to avoid confusion with the built-in `str.tostring()` function, it is recommended to use this library's `tostring()` as a method rather than a function:
string timezone = timezoneInput.tostring()
offset(timestamp, format, timezone, prefix, colon)
Formats the time offset from a UNIX timestamp represented in a specified timezone.
Namespace types: series OffsetFormat
Parameters:
timestamp (int) : (series int) A UNIX time.
format (series OffsetFormat) : (series OffsetFormat) A time offset format.
timezone (string) : (series string) A UTC/GMT offset or IANA time zone identifier.
prefix (string) : (series string) Optional 'UTC' or 'GMT' prefix for the result.
colon (bool) : (series bool) Optional usage of colon separator.
Returns: Time zone offset using the selected format.
The 𝚘𝚏𝚏𝚜𝚎𝚝() function is provided as a convenient alternative to manually using `str.format_time()` and then manipulating the result.
The OffsetFormat enum is used to decide the format of the result from the `offset()` function. The library source code contains comments above this enum declaration that describe how each enum field will modify a time offset.
Tip: hover over the `offset()` function call in the Pine Editor to display a pop-up containing:
Function description
Detailed parameter list, including default values
Example function calls
Example outputs for different OffsetFormat.* enum values
NOTES
At the time of this publication, Pine cannot be used to access a chart's selected time zone. Therefore, the main benefit of this library is to provide a quick and easy way to create a pine script input for a time zone (most commonly, the same time zone selected in the user's chart settings).
At the time of the creation of this library, there are 95 Time Zones made available in the TradingView chart settings. If any changes are made to the time zone settings, this library will be updated to match the new changes.
All time zone enums (and their individual fields) in this library were manually verified and tested to ensure correctness.
An example usage of this library is included at the bottom of the source code.
Credits to HoanGhetti for providing a nice Markdown resource which I referenced to be able to create a formatted informational pop-up for this library's `offset()` function.
lib_input_enumLibrary "lib_input_enum"
some enum wrappers for style identifiers, that can be used in input.enum calls to have nicer dropdown names
to_size(select)
converts Size enum to builtin size.tiny / size.small / etc., ideally used around input: to_size(input.enum(Size.SMALL, ....))
Parameters:
select (series Size)
to_size(select)
converts a string key to builtin size.tiny / size.small / etc., ideally used around input: to_size(input.string('small', ...., ))
Parameters:
select (string)
reduce_size(select)
converting a builtin size identifier to one instance smaller (except tiny and auto)
Parameters:
select (string)
to_linestyle(select)
converts LineStyle enum to builtin line.style_solid / line.style_dashed / line.style_dotted, ideally used around input: to_linestyle(input.enum(LineStyle.SOLID, ....))
Parameters:
select (series LineStyle)
to_linestyle(select)
converts a string key to builtin line.style_solid / line.style_dashed / line.style_dotted, ideally used around input: to_linestyle(input.string('solid', ...., ))
Parameters:
select (string)
to_labelstyle(select)
converts LineStyle enum to builtin line.style_solid / line.style_dashed / line.style_dotted, ideally used around input: to_linestyle(input.enum(LineStyle.SOLID, ....))
Parameters:
select (series LabelStyle)
to_labelstyle(select)
converts a string key to builtin line.style_solid / line.style_dashed / line.style_dotted, ideally used around input: to_linestyle(input.string('solid', ...., ))
Parameters:
select (string)
ManipulationLegHelperLibraryLibrary "ManipulationLegHelperLibrary"
TODO: add library description here
devToArray(dev)
Parameters:
dev (string)
getDev(d, bull, h, l)
Parameters:
d (float)
bull (bool)
h (float)
l (float)
getBearLeg(sweeps, minLegSize, drawLegBox, boxColor)
Parameters:
sweeps (int)
minLegSize (float)
drawLegBox (bool)
boxColor (color)
getBullLeg(sweeps, minSize, drawBox, boxColor)
Parameters:
sweeps (int)
minSize (float)
drawBox (bool)
boxColor (color)
leg
Fields:
time (series int)
low (series float)
high (series float)
edge (series bool)
edge_price (series float)
validated (series int)
sweeps (series int)
barC (series int)
bx (series box)
RawCuts_01Library "RawCuts_01"
A collection of functions by:
mutantdog
The majority of these are used within published projects, some useful variants have been included here aswell.
This is volume one consisting mainly of smaller functions, predominantly the filters and standard deviations from Weight Gain 4000.
Also included at the bottom are various snippets of related code for demonstration. These can be copied and adjusted according to your needs.
A full up-to-date table of contents is located at the top of the main script.
WEIGHT GAIN FILTERS
A collection of moving average type filters with adjustable volume weighting.
Based upon the two most common methods of volume weighting.
'Simple' uses the standard method in which a basic VWMA is analogous to SMA.
'Elastic' uses exponential method found in EVWMA which is analogous to RMA.
Volume weighting is applied according to an exponent multiplier of input volume.
0 >> volume^0 (unweighted), 1 >> volume^1 (fully weighted), use float values for intermediate weighting.
Additional volume filter switch for smoothing of outlier events.
DIVA MODULAR DEVIATIONS
A small collection of standard and absolute deviations.
Includes the weightgain functionality as above.
Basic modular functionality for more creative uses.
Optional input (ct) for external central tendency (aka: estimator).
Can be assigned to alternative filter or any float value. Will default to internal filter when no ct input is received.
Some other useful or related functions included at the bottom along with basic demonstration use.
weightgain_sma(src, len, xVol, fVol)
Simple Moving Average (SMA): Weight Gain (Simple Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
Returns: Standard Simple Moving Average with Simple Weight Gain applied.
weightgain_hsma(src, len, xVol, fVol)
Harmonic Simple Moving Average (hSMA): Weight Gain (Simple Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
Returns: Harmonic Simple Moving Average with Simple Weight Gain applied.
weightgain_gsma(src, len, xVol, fVol)
Geometric Simple Moving Average (gSMA): Weight Gain (Simple Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
Returns: Geometric Simple Moving Average with Simple Weight Gain applied.
weightgain_wma(src, len, xVol, fVol)
Linear Weighted Moving Average (WMA): Weight Gain (Simple Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
Returns: Basic Linear Weighted Moving Average with Simple Weight Gain applied.
weightgain_hma(src, len, xVol, fVol)
Hull Moving Average (HMA): Weight Gain (Simple Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
Returns: Basic Hull Moving Average with Simple Weight Gain applied.
diva_sd_sma(src, len, xVol, fVol, ct)
Standard Deviation (SD SMA): Diva / Weight Gain (Simple Volume)
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
ct (float) : Central tendency (optional, na = bypass). Internal: weightgain_sma().
Returns:
diva_sd_wma(src, len, xVol, fVol, ct)
Standard Deviation (SD WMA): Diva / Weight Gain (Simple Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
ct (float) : Central tendency (optional, na = bypass). Internal: weightgain_wma().
Returns:
diva_aad_sma(src, len, xVol, fVol, ct)
Average Absolute Deviation (AAD SMA): Diva / Weight Gain (Simple Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
ct (float) : Central tendency (optional, na = bypass). Internal: weightgain_sma().
Returns:
diva_aad_wma(src, len, xVol, fVol, ct)
Average Absolute Deviation (AAD WMA): Diva / Weight Gain (Simple Volume) .
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
ct (float) : Central tendency (optional, na = bypass). Internal: weightgain_wma().
Returns:
weightgain_ema(src, len, xVol, fVol)
Exponential Moving Average (EMA): Weight Gain (Elastic Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
Returns: Exponential Moving Average with Elastic Weight Gain applied.
weightgain_dema(src, len, xVol, fVol)
Double Exponential Moving Average (DEMA): Weight Gain (Elastic Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
Returns: Double Exponential Moving Average with Elastic Weight Gain applied.
weightgain_tema(src, len, xVol, fVol)
Triple Exponential Moving Average (TEMA): Weight Gain (Elastic Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
Returns: Triple Exponential Moving Average with Elastic Weight Gain applied.
weightgain_rma(src, len, xVol, fVol)
Rolling Moving Average (RMA): Weight Gain (Elastic Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
Returns: Rolling Moving Average with Elastic Weight Gain applied.
weightgain_drma(src, len, xVol, fVol)
Double Rolling Moving Average (DRMA): Weight Gain (Elastic Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
Returns: Double Rolling Moving Average with Elastic Weight Gain applied.
weightgain_trma(src, len, xVol, fVol)
Triple Rolling Moving Average (TRMA): Weight Gain (Elastic Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
Returns: Triple Rolling Moving Average with Elastic Weight Gain applied.
diva_sd_ema(src, len, xVol, fVol, ct)
Standard Deviation (SD EMA): Diva / Weight Gain: (Elastic Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
ct (float) : Central tendency (optional, na = bypass). Internal: weightgain_ema().
Returns:
diva_sd_rma(src, len, xVol, fVol, ct)
Standard Deviation (SD RMA): Diva / Weight Gain: (Elastic Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
ct (float) : Central tendency (optional, na = bypass). Internal: weightgain_rma().
Returns:
weightgain_vidya_rma(src, len, xVol, fVol)
VIDYA v1 RMA base (VIDYA-RMA): Weight Gain (Elastic Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
Returns: VIDYA v1, RMA base with Elastic Weight Gain applied.
weightgain_vidya_ema(src, len, xVol, fVol)
VIDYA v1 EMA base (VIDYA-EMA): Weight Gain (Elastic Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
Returns: VIDYA v1, EMA base with Elastic Weight Gain applied.
diva_sd_vidya_rma(src, len, xVol, fVol, ct)
Standard Deviation (SD VIDYA-RMA): Diva / Weight Gain: (Elastic Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
ct (float) : Central tendency (optional, na = bypass). Internal: weightgain_vidya_rma().
Returns:
diva_sd_vidya_ema(src, len, xVol, fVol, ct)
Standard Deviation (SD VIDYA-EMA): Diva / Weight Gain: (Elastic Volume).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
xVol (float) : Volume exponent multiplier (0 = unweighted, 1 = fully weighted).
fVol (bool) : Volume smoothing filter.
ct (float) : Central tendency (optional, na = bypass). Internal: weightgain_vidya_ema().
Returns:
weightgain_sema(src, len, xVol, fVol)
Parameters:
src (float)
len (simple int)
xVol (float)
fVol (bool)
diva_sd_sema(src, len, xVol, fVol)
Parameters:
src (float)
len (simple int)
xVol (float)
fVol (bool)
diva_mad_mm(src, len, ct)
Median Absolute Deviation (MAD MM): Diva (no volume weighting).
Parameters:
src (float) : Source input.
len (int) : Length (number of bars).
ct (float) : Central tendency (optional, na = bypass). Internal: ta.median()
Returns:
source_switch(slct, aux1, aux2, aux3, aux4)
Custom Source Selector/Switch function. Features standard & custom 'weighted' sources with additional aux inputs.
Parameters:
slct (string) : Choose from custom set of string values.
aux1 (float) : Additional input for user-defined source, eg: standard input.source(). Optional, use na to bypass.
aux2 (float) : Additional input for user-defined source, eg: standard input.source(). Optional, use na to bypass.
aux3 (float) : Additional input for user-defined source, eg: standard input.source(). Optional, use na to bypass.
aux4 (float) : Additional input for user-defined source, eg: standard input.source(). Optional, use na to bypass.
Returns: Float value, to be used as src input for other functions.
colour_gradient_ma_div(ma1, ma2, div, bull, bear, mid, mult)
Colour Gradient for plot fill between two moving averages etc, with seperate bull/bear and divergence strength.
Parameters:
ma1 (float) : Input for fast moving average (eg: bullish when above ma2).
ma2 (float) : Input for slow moving average (eg: bullish when below ma1).
div (float) : Input deviation/divergence value used to calculate strength of colour.
bull (color) : Colour when ma1 above ma2.
bear (color) : Colour when ma1 below ma2.
mid (color) : Neutral colour when ma1 = ma2.
mult (int) : Opacity multiplier. 100 = maximum, 0 = transparent.
Returns: Colour with transparency (according to specified inputs)
CSVParser█ OVERVIEW
The library contains functions for parsing and importing complex CSV configurations (with a special simple syntax) into a special hierarchical object (of type objProps ) as follows:
Functions:
parseConfig() - reads CSV text into an objProps object.
toT() - displays the contents of an objProps object in a table form, which allows to check the CSV text for syntax errors.
getPropAr() - returns objProps.arS array for child object with `prop` key in mpObj map (or na if not found)
This library is handy in allowing users to store presets for the scripts and switch between them (see, e.g., my HTF moving averages script where users can switch between several preset configuations of 24 MA's across 5 timeframes).
█ HOW THE SCRIPT WORKS.
The script works as follows:
all values read from config text are stored as strings
Nested brackets in config text create a named nested objects of objProps0, ... , objProps9 types.
objProps objects of each level have the following fields:
- array arS for storing values without names (e.g. "12, 23" will be imported into a string array arS as )
- map mpS for storing items with names (e.g. "tf = 60, length = 21" will be imported as <"tf", "60"> and <"length", "21"> pairs into mpS )
- map mpObj for storing nested objects (e.g. "TF1(tf=60, length(21,50,100))" creates a <"TF1, objProps0 object> pair in mpObj map property of the top level object (objProps) , "tf=60" is stored as <"tf", "60"> key-value pair in mpS map property of a next level object (objProps0) and "length (...)" creates a <"length", objProps1> pair in objProps0.mpObj map while length values are stored in objProps1.arS array as strings. Every opening bracket creates a next level objProps object.
If objects or properties with duplicate names are encountered only the latest is imported
(e.g. for "TF1(length(12,22)), TF1(tf=240)" only "TF1(tf=240)" will be imported
Line breaks are not regarded as part of syntax (i.e. values are imported with line breaks, you can supply
symbols "(" , ")" , "," and "=" are special characters and cannot be used within property values (with the exception of a quoted text as a value of a property as explained below)
named properties can have quoted text as their value. In that case special characters within quotation marks are regarded as normal characters. Text between "=" and opening quotation mark as well as text following the closing quotation mark and until next property value is ignored. E.g. "quote = ignored "The quote" also ignored" will be imported as <"quote", "The quote">. Quotation marks within quotes must be excaped with "\" .
if a key names happens to be a multi-line then only first line containing non-space characters (trimmed from spaces) is taken as a key.
")," or ") ," and similar do not create an empty ("") array item while ",," does. (",)" creates an "" array item)
█ CSV CONFIGURATION SYNTAX
Unnamed values: just list them comma separated and they will be imported into arS of the object of the current level.
Named values: use "=" sign as follows: "property1=value1, property2 = value2"
Value of several objects: Use brackets after the name of the object ant list all object properties within the brackets (including its child objects if necessary). E.g. "TF1(tf =60, length(21,200), TF2(tf=240, length(50,200)"
Named and unnamed values as well as objects can go in any order. E.g. "12, tf=60, 21" will be imported as follows: "12", "21" will go to arS array and <"tf", "60"> will go to mpS maP of objProps (the top level object).
You can play around and test your config text using demo in this library, just edit your text in script settings and see how it is parsed into objProps objects.
█ USAGE RECOMMENDATIONS AND SAMPLE USE
I suggest the following approach:
- create functions for your UDT which can set properties by name.
- create enumerator functions which iterates through all the property names (supplied as a const string array) and imports their values into the object
█ SAMPLE USE
A sample use of this library can be seen in my Multi-timeframe 24 moving averages + BB+SAR+Supertrend+VWAP script where settings for the MAs across many timeframes are imported from CSV configurations (presets).
█ FULL LIST OF FUNCTIONS AND PROPERTIES
nzs(_s, nz)
Like nz() but for strings. Returns `nz` arg (default = "") if _s is na.
Parameters:
_s (string)
nz (string)
method init(this)
Initializes objProps obj (creates child maps and arrays)
Namespace types: objProps
Parameters:
this (objProps)
method toT(this, nz)
Outputs objProps to string matrices for further display using autotable().
Namespace types: objProps, objProps1, ..., objProps9
Parameters:
this (objProps/objProps1/..../objProps9)
nz (string)
Returns: A tuple - value, merge and color matrix (autotable() parameters)
method parseConfig(this, s)
Reads config text into objProps (unnamed values into arS, named into mpS, sub-levels into mpObj)
Namespace types: objProps
Parameters:
this (objProps)
s (string)
method getPropArS(this, prop)
Returns a string array of values for a given property name `prop`. Looks for a key `prop` in objProps.mpObj
if finds pair returns obj.arS, otherwise returns na. Returns a reference to the original, not a copy.
Namespace types: objProps, objProps1, ..., objProps8
Parameters:
this (objProps/objProps1/..../objProps8)
prop (string)
method getPropVal(this, prop, id)
Checks if there is an array of values for property `prop` and returns its `id`'s element or na if not found
Namespace types: objProps, objProps1, ..., objProps8
Parameters:
this (objProps/objProps1/..../objProps8) : objProps object containing array of property values in a child objProp object corresponding to propertty name.
prop (string) : (string) Name of the property
id (int) : (int) Id of the element to be returned from the array pf property values
objProps9 type
Object for storing values read from CSV relating to a particular object or property name.
Fields:
mpS (map) : (map() Stores property values as pairs
arS (array) : (string ) Array of values
objProps, objProps0, ... objProps8 types
Object for storing values read from CSV relating to a particular object or property name.
Fields:
mpS (map) : (map() Stores property values as pairs
arS (array) : (string ) Array of values
mpObj (map) : (map() Stores objProps objects containing properties's data as pairs
StyleLibraryLibrary "StyleLibrary"
A small library of Pine Script functions that return built-in style variables.
method sizeStyle(size)
Takes a `string` that returns the corresponding built-in size style variable.
Namespace types: series string, simple string, input string, const string
Parameters:
size (string) : A `string` representing a built-in size style: `"Tiny"`, `"Small"`, `"Normal"`, `"Large"`,
`"Huge"`, `"Auto"`.
Returns: The respective built-in size style variable.
method sizeStyle(size)
Takes a `sizeStyle` that returns the corresponding built-in size style variable.
Namespace types: series sizeStyle
Parameters:
size (series sizeStyle) : A `sizeStyle` representing a built-in size style variable.
Returns: The respective built-in size style variable.
method lineStyle(style)
Takes a `string` that returns the corresponding built-in line style variable.
Namespace types: series string, simple string, input string, const string
Parameters:
style (string) : A `string` representing a built-in line style: `"Dashed"`, `"Dotted"`, `"Solid"`.
Returns: The respective built-in line style variable.
method lineStyle(style)
Takes a `lineStyle` that returns the corresponding built-in line style variable.
Namespace types: series lineStyle
Parameters:
style (series lineStyle) : A `lineStyle` representing a built-in line style variable.
Returns: The respective built-in line style variable.
method labelStyle(style)
Takes a `string` that returns the corresponding built-in label style variable.
Namespace types: series string, simple string, input string, const string
Parameters:
style (string) : A `string` representing a built-in label style:
`"Arrow Down"`, `"Arrow Up"`, `"Circle"`, `"Cross"`, `"Diamond"`, `"Flag"`,
`"Label Center"`, `"Label Down"`, `"Label Left"`, `"Label Lower Left"`,
`"Label Lower Right"`, `"Label Right"`, `"Label Up"`, `"Label Upper Left"`,
`"Label Upper Right"`, `"None"`, `"Square"`, `"Text Outline"`, `"Triangle Down"`,
`"Triangle Up"`, `"XCross"`.
Returns: The respective built-in label style variable.
method labelStyle(style)
Takes a `labelStyle` that returns the corresponding built-in label style variable.
Namespace types: series labelStyle
Parameters:
style (series labelStyle) : A `labelStyle` representing a built-in label style variable.
Returns: The respective built-in label style variable.
method fontStyle(font)
Takes a `string` that returns the corresponding built-in font style variable.
Namespace types: series string, simple string, input string, const string
Parameters:
font (string) : A `string` representing a built-in font style: `"Default"`, `"Monospace"`.
Returns: The respective built-in font style variable.
method positionStyle(position)
Takes a `string` that returns the corresponding built-in position style variable.
Namespace types: series string, simple string, input string, const string
Parameters:
position (string) : A `string` representing a built-in position style:
`"Bottom Center", `"Bottom Left", `"Bottom Right", `"Middle Center", `"Middle Left",
`"Middle Right", `"Top Center", `"Top Left", `"Top Right".
Returns: The respective built-in position style variable.
method displayStyle(display)
Takes a `simple string` that returns the corresponding built-in display style variable.
Namespace types: simple string, input string, const string
Parameters:
display (simple string) : A `simple string` representing a built-in display style: `"All"`, `"Data Window"`,
`"None"`, `"Pane"`, `"Price Scale"`, `"Status Line"`.
Returns: The respective built-in display style variable.
PubLibUtilityLibrary "PubLibUtility"
utilities for indicator and strategy development
size(size)
size to string conversion
Parameters:
size (string)
Returns: const string
tab_pos(tab_pos)
table position to string conversion
Parameters:
tab_pos (string)
Returns: const string
time_string(time_in)
time to string conversion
Parameters:
time_in (int)
Returns: literal string
DynamicFunctionsLibrary "DynamicFunctions"
Custom Dynamic functions that allow an adaptive calculation beginning from the first bar
RoC(src, period)
Dynamic RoC
Parameters:
src (float) : and period
Custom function to calculate the actual period considering non-na source values
period (int)
dynamicMedian(src, length)
Dynamic Median
Parameters:
src (float) : and length
length (int)
kernelRegression(src, bandwidth, kernel_type)
Dynamic Kernel Regression Calculation Uses either of the following inputs for kernel_type: Epanechnikov Logistic Wave
Parameters:
src (float)
bandwidth (int)
kernel_type (string)
waveCalculation(source, bandwidth, width)
Use together with kernelRegression function to get chart applicable band
Parameters:
source (float)
bandwidth (int)
width (float)
Rsi(src, length)
Dynamic RSI function
Parameters:
src (float)
length (int)
dynamicStdev(src, period)
Dynamic SD function
Parameters:
src (float)
period (int)
stdv_bands(src, length, mult)
Dynamic SD Bands
Parameters:
src (float)
length (int)
mult (float)
Returns: Basis, Positive SD, Negative SD
Adx(dilen, adxlen)
Dynamic ADX
Parameters:
dilen (int)
adxlen (int)
Returns: adx
Atr(length)
Dynamic ATR
Parameters:
length (int)
Returns: ATR
Macd(source, fastLength, slowLength, signalSmoothing)
Dynamic MACD
Parameters:
source (float)
fastLength (int)
slowLength (int)
signalSmoothing (int)
Returns: macdLine, signalLine, histogram
azLibConnectorThe AzLibConnector provides a comprehensive suite of functions for facilitating seamless communication and chaining of signal value streams between connectable indicators, signal filters, monitors, and strategies on TradingView. By adeptly integrating both positive and negative weights from Entry Long (EL), Exit Long (XL), Entry Short (ES), and Exit Short (XS) signals into a singular figure, it leverages the source input field of TradingView to efficiently connect indicators in a chain. This results in a streamlined strategy setup without the necessity for Pine Script coding. Emphasizing modularity and uniformity, this library enables users to easily combine indicators into a coherent system, facilitating strategy development and execution with flexibility.
█ LIBRARY USAGE
extract(srcConnector)
Extract signals (EL, XL, ES, XS) from incoming connector signal stream
Parameters:
srcConnector : (series float) Source Connector. The connector stream series to extract the signals from.
Returns: A tuple containing the extracted EL, XL, ES, XS signal values.
compose(signalEL, signalXL, signalES, signalXS)
Compose a connector output signal stream from given EL, XL, ES and XS signals to be used by other Azullian Strategy Builder blocks.
Parameters:
signalEL : (series float) Entry Long signal value.
signalXL : (series float) Exit Long signal value.
signalES : (series float) Entry Short signal value.
signalXS : (series float) Exit Short signal value.
Returns: (series float) A composed connector output signal stream.
█ USAGE OF CONNECTABLE INDICATORS
■ Connectable chaining mechanism
Connectable indicators can be connected directly to the monitor, signal filter or strategy , or they can be daisy chained to each other while the last indicator in the chain connects to the monitor, signal filter or strategy. When using a signal filter or monitor you can chain the filter to the strategy input to make your chain complete.
• Direct chaining: Connect an indicator directly to the monitor, signal filter or strategy through the provided inputs (→).
• Daisy chaining: Connect indicators using the indicator input (→). The first in a daisy chain should have a flow (⌥) set to 'Indicator only'. Subsequent indicators use 'Both' to pass the previous weight. The final indicator connects to the monitor, signal filter, or strategy.
■ Set up the signal filter with a connectable indicator and strategy
Let's connect the MACD to a connectable signal filter and a strategy :
1. Load all relevant indicators
• Load MACD / Connectable
• Load Signal filter / Connectable
• Load Strategy / Connectable
2. Signal Filter: Connect the MACD to the Signal Filter
• Open the signal filter settings
• Choose one of the five input dropdowns (1→, 2→, 3→, 4→, 5→) and choose : MACD / Connectable: Signal Connector
• Toggle the enable box before the connected input to enable the incoming signal
3. Signal Filter: Update the filter settings if needed
• The default filter mode for the trading direction is SWING, and is compatible with the default settings in the strategy and indicators.
4. Signal Filter: Update the weight threshold settings if needed
• All connectable indicators load by default with a score of 6 for each direction (EL, XL, ES, XS)
• By default, weight threshold is 'ABOVE' Threshold 1 (TH1) and Threshold 2 (TH2), both set at 5. This allows each occurrence to score, as the default score is 1 point above the threshold.
5. Strategy: Connect the strategy to the signal filter in the strategy settings
• Select a strategy input → and select the Signal filter: Signal connector
6. Strategy: Enable filter compatible directions
• As the default setting of the filter is SWING, we should also set the SM (Strategy mode) to SWING.
Now that everything is connected, you'll notice green spikes in the signal filter or signal monitor representing long signals, and red spikes indicating short signals. Trades will also appear on the chart, complemented by a performance overview. Your journey is just beginning: delve into different scoring mechanisms, merge diverse connectable indicators, and craft unique chains. Instantly test your results and discover the potential of your configurations. Dive deep and enjoy the process!
█ BENEFITS
• Adaptable Modular Design: Arrange indicators in diverse structures via direct or daisy chaining, allowing tailored configurations to align with your analysis approach.
• Streamlined Backtesting: Simplify the iterative process of testing and adjusting combinations, facilitating a smoother exploration of potential setups.
• Intuitive Interface: Navigate TradingView with added ease. Integrate desired indicators, adjust settings, and establish alerts without delving into complex code.
• Signal Weight Precision: Leverage granular weight allocation among signals, offering a deeper layer of customization in strategy formulation.
• Advanced Signal Filtering: Define entry and exit conditions with more clarity, granting an added layer of strategy precision.
• Clear Visual Feedback: Distinct visual signals and cues enhance the readability of charts, promoting informed decision-making.
• Standardized Defaults: Indicators are equipped with universally recognized preset settings, ensuring consistency in initial setups across different types like momentum or volatility.
• Reliability: Our indicators are meticulously developed to prevent repainting. We strictly adhere to TradingView's coding conventions, ensuring our code is both performant and clean.
█ COMPATIBLE INDICATORS
Each indicator that incorporates our open-source 'azLibConnector' library and adheres to our conventions can be effortlessly integrated and used as detailed above.
For clarity and recognition within the TradingView platform, we append the suffix ' / Connectable' to every compatible indicator.
█ COMMON MISTAKES
• Removing an indicator from a chain: Deleting a linked indicator and confirming the "remove study tree" alert will also remove all underlying indicators in the object tree. Before removing one, disconnect the adjacent indicators and move it to the object stack's bottom.
• Point systems: The azLibConnector provides 500 points for each direction (EL: Enter long, XL: Exit long, ES: Enter short, XS: Exit short) Remember this cap when devising a point structure.
• Flow misconfiguration: In daisy chains the first indicator should always have a flow (⌥) setting of 'indicator only' while other indicator should have a flow (⌥) setting of 'both'.
█ A NOTE OF GRATITUDE
Through years of exploring TradingView and Pine Script, we've drawn immense inspiration from the community's knowledge and innovation. Thank you for being a constant source of motivation and insight.
█ RISK DISCLAIMER
Azullian's content, tools, scripts, articles, and educational offerings are presented purely for educational and informational uses. Please be aware that past performance should not be considered a predictor of future results.
Chess_Data_5This library supplies a randomized list of 1-Move Chess Puzzles, this is 5/5 in my collection of puzzles on Tradingview.
This library contains 730 chess puzzles, this is enough for 1 unique chess puzzle for 2 years (730/365 = 2)
The Puzzles are sourced from Lichess's open-source database found here -> | database.lichess.org
This data has been reduced to only included 1-Move chess puzzles with a popularity rating of > 70, and condensed for ease of formatting and less characters.
The reduced format of the data in this library reads:
"Puzzle Code, Modified FEN, Moves, Puzzle Rating, Popularity Rating"
Puzzle Code: Lichess Codes Identifying each puzzle, this allows them to be retrieved from their website based on this Code.
Modified FEN: Forsyth-Edwards Notation is the standard notation to describe positions of a chess game. This includes the active move tacked onto the end after the last '/', this simplifies the process to retrieve the active move in PineScript.
Moves: This holds the first move seen by the player in the puzzle (opposite color), and then the correct next move which is Puzzle Solution, that the player is trying to determine.
Puzzle Rating: Difficulty Rating of the Puzzle, Generally speaking | Under 1500 = Beginner | 1500 to 1800 Casual | 1800 to 2100 Intermediate | 2100+ Advanced
Popularity Ranking: This is the popularity ranking calculated by lichess based on their own data of user feedback.
Note: After Reducing the amount of data down to only 1-Move puzzles with a popularity rating of > 70%, there is still around 340k puzzles. (Enough for over 900 Years!)
> Functions [/b
get()
Returns the list of chess puzzle data.
Chess_Data_4This library supplies a randomized list of 1-Move Chess Puzzles, this is 4/5 in my collection of puzzles on Tradingview.
This library contains 730 chess puzzles, this is enough for 1 unique chess puzzle for 2 years (730/365 = 2)
The Puzzles are sourced from Lichess's open-source database found here -> | database.lichess.org
This data has been reduced to only included 1-Move chess puzzles with a popularity rating of > 70, and condensed for ease of formatting and less characters.
The reduced format of the data in this library reads:
"Puzzle Code, Modified FEN, Moves, Puzzle Rating, Popularity Rating"
Puzzle Code: Lichess Codes Identifying each puzzle, this allows them to be retrieved from their website based on this Code.
Modified FEN: Forsyth-Edwards Notation is the standard notation to describe positions of a chess game. This includes the active move tacked onto the end after the last '/', this simplifies the process to retrieve the active move in PineScript.
Moves: This holds the first move seen by the player in the puzzle (opposite color), and then the correct next move which is Puzzle Solution, that the player is trying to determine.
Puzzle Rating: Difficulty Rating of the Puzzle, Generally speaking | Under 1500 = Beginner | 1500 to 1800 Casual | 1800 to 2100 Intermediate | 2100+ Advanced
Popularity Ranking: This is the popularity ranking calculated by lichess based on their own data of user feedback.
Note: After Reducing the amount of data down to only 1-Move puzzles with a popularity rating of > 70%, there is still around 340k puzzles. (Enough for over 900 Years!)
> Functions [/b
get()
Returns the list of chess puzzle data.
Chess_Data_3This library supplies a randomized list of 1-Move Chess Puzzles, this is 3/5 in my collection of puzzles on Tradingview.
This library contains 730 chess puzzles, this is enough for 1 unique chess puzzle for 2 years (730/365 = 2)
The Puzzles are sourced from Lichess's open-source database found here -> | database.lichess.org
This data has been reduced to only included 1-Move chess puzzles with a popularity rating of > 70, and condensed for ease of formatting and less characters.
The reduced format of the data in this library reads:
"Puzzle Code, Modified FEN, Moves, Puzzle Rating, Popularity Rating"
Puzzle Code: Lichess Codes Identifying each puzzle, this allows them to be retrieved from their website based on this Code.
Modified FEN: Forsyth-Edwards Notation is the standard notation to describe positions of a chess game. This includes the active move tacked onto the end after the last '/', this simplifies the process to retrieve the active move in PineScript.
Moves: This holds the first move seen by the player in the puzzle (opposite color), and then the correct next move which is Puzzle Solution, that the player is trying to determine.
Puzzle Rating: Difficulty Rating of the Puzzle, Generally speaking | Under 1500 = Beginner | 1500 to 1800 Casual | 1800 to 2100 Intermediate | 2100+ Advanced
Popularity Ranking: This is the popularity ranking calculated by lichess based on their own data of user feedback.
Note: After Reducing the amount of data down to only 1-Move puzzles with a popularity rating of > 70%, there is still around 340k puzzles. (Enough for over 900 Years!)
> Functions [/b
get()
Returns the list of chess puzzle data.
Chess_Data_2This library supplies a randomized list of 1-Move Chess Puzzles, this is 2/5 in my collection of puzzles on Tradingview.
This library contains 730 chess puzzles, this is enough for 1 unique chess puzzle for 2 years (730/365 = 2)
The Puzzles are sourced from Lichess's open-source database found here -> | database.lichess.org
This data has been reduced to only included 1-Move chess puzzles with a popularity rating of > 70, and condensed for ease of formatting and less characters.
The reduced format of the data in this library reads:
"Puzzle Code, Modified FEN, Moves, Puzzle Rating, Popularity Rating"
Puzzle Code: Lichess Codes Identifying each puzzle, this allows them to be retrieved from their website based on this Code.
Modified FEN: Forsyth-Edwards Notation is the standard notation to describe positions of a chess game. This includes the active move tacked onto the end after the last '/', this simplifies the process to retrieve the active move in PineScript.
Moves: This holds the first move seen by the player in the puzzle (opposite color), and then the correct next move which is Puzzle Solution, that the player is trying to determine.
Puzzle Rating: Difficulty Rating of the Puzzle, Generally speaking | Under 1500 = Beginner | 1500 to 1800 Casual | 1800 to 2100 Intermediate | 2100+ Advanced
Popularity Ranking: This is the popularity ranking calculated by lichess based on their own data of user feedback.
Note: After Reducing the amount of data down to only 1-Move puzzles with a popularity rating of > 70%, there is still around 340k puzzles. (Enough for over 900 Years!)
> Functions [/b
get()
Returns the list of chess puzzle data.
Chess_Data_1This library supplies a randomized list of 1-Move Chess Puzzles, this is 1/5 in my collection of puzzles on Tradingview.
This library contains 730 chess puzzles, this is enough for 1 unique chess puzzle for 2 years (730/365 = 2)
The Puzzles are sourced from Lichess's open-source database found here -> | database.lichess.org
This data has been reduced to only included 1-Move chess puzzles with a popularity rating of > 70, and condensed for ease of formatting and less characters.
The reduced format of the data in this library reads:
"Puzzle Code, Modified FEN, Moves, Puzzle Rating, Popularity Rating"
Puzzle Code: Lichess Codes Identifying each puzzle, this allows them to be retrieved from their website based on this Code.
Modified FEN: Forsyth-Edwards Notation is the standard notation to describe positions of a chess game. This includes the active move tacked onto the end after the last '/', this simplifies the process to retrieve the active move in PineScript.
Moves: This holds the first move seen by the player in the puzzle (opposite color), and then the correct next move which is Puzzle Solution, that the player is trying to determine.
Puzzle Rating: Difficulty Rating of the Puzzle, Generally speaking | Under 1500 = Beginner | 1500 to 1800 Casual | 1800 to 2100 Intermediate | 2100+ Advanced
Popularity Ranking: This is the popularity ranking calculated by lichess based on their own data of user feedback.
Note: After Reducing the amount of data down to only 1-Move puzzles with a popularity rating of > 70%, there is still around 340k puzzles. (Enough for over 900 Years!)
> Functions [/b
get()
Returns the list of chess puzzle data.
Word_Puzzle_Data_R2ZLibrary "Word_Puzzle_Data_R2Z"
This Library consists of functions for returning arrays of words starting with R through Z.
By splitting the data through multiple libraries, I can import more tokens into my final compiled script, so having this data separately is extremely helpful.
This library is the the container 1/3 for my database of 5 Letter words uses in my "Word Puzzle" Game.
The List was Obtained from this master list| gist.github.com
The list was also filtered for profanity.
If there were more than 999 words under 1 first letter, then I have made the array for the 1 letter into 2. 'letter1' & 'letter2', these are used for the letters "P, B, & S".
All words are lowercase
r_ary()
- Returns an array of words starting with "R"
s1_ary()
- Returns an array of words starting with "S"
s2_ary()
- Returns an array of words starting with "S"
t_ary()
- Returns an array of words starting with "T"
u_ary()
- Returns an array of words starting with "U"
v_ary()
- Returns an array of words starting with "V"
w_ary()
- Returns an array of words starting with "W"
x_ary()
- Returns an array of words starting with "X"
y_ary()
- Returns an array of words starting with "Y"
z_ary()
- Returns an array of words starting with "Z"
Word_Puzzle_Data_I2QLibrary "Word_Puzzle_Data_I2Q"
This Library consists of functions for returning arrays of words starting with I through Q.
By splitting the data through multiple libraries, I can import more tokens into my final compiled script, so having this data separately is extremely helpful.
This library is the the container 1/3 for my database of 5 Letter words uses in my "Word Puzzle" Game.
The List was Obtained from this master list| gist.github.com
The list was also filtered for profanity.
If there were more than 999 words under 1 first letter, then I have made the array for the 1 letter into 2. 'letter1' & 'letter2', these are used for the letters "P, B, & S".
All words are lowercase
i_ary()
- Returns an array of words starting with "I"
j_ary()
- Returns an array of words starting with "J"
k_ary()
- Returns an array of words starting with "K"
l_ary()
- Returns an array of words starting with "L"
m_ary()
- Returns an array of words starting with "M"
n_ary()
- Returns an array of words starting with "N"
o_ary()
- Returns an array of words starting with "O"
p1_ary()
- Returns an array of words starting with "P"
p2_ary()
- Returns an array of words starting with "P"
q_ary()
- Returns an array of words starting with "Q"
Word_Puzzle_Data_A2HLibrary "Word_Puzzle_Data_A2H"
This Library consists of functions for returning arrays of words starting with A through H.
By splitting the data through multiple libraries, I can import more tokens into my final compiled script, so having this data separately is extremely helpful.
This library is the the container 1/3 for my database of 5 Letter words uses in my "Word Puzzle" Game.
The List was Obtained from this master list| gist.github.com
The list was also filtered for profanity.
If there were more than 999 words under 1 first letter, then I have made the array for the 1 letter into 2. 'letter1' & 'letter2', these are used for the letters "P, B, & S".
All words are lowercase
a_ary()
- Returns an array of words starting with "'A"
b1_ary()
- Returns an array of words starting with "B"
b2_ary()
- Returns an array of words starting with "B"
c_ary()
- Returns an array of words starting with "C"
d_ary()
- Returns an array of words starting with "D"
e_ary()
- Returns an array of words starting with "E"
f_ary()
- Returns an array of words starting with "F"
g_ary()
- Returns an array of words starting with "G"
h_ary()
- Returns an array of words starting with "H"
forex_factory_decodingLibrary "forex_factory_decoding"
Supporting Utility Library for the Live Economic Calendar by toodegrees Indicator; responsible for formatting and saving Forex Factory News events.
isLeapYear()
Finds if it's currently a leap year or not.
Returns: Returns True if the current year is a leap year.
daysMonth(M)
Provides the days in a given month of the year, adjusted during leap years.
Parameters:
M (int) : Month in numerical integer format (i.e. Jan=1).
Returns: Days in the provided month.
MMM(M)
Converts a month from a numerical integer format to a MMM format (i.e. 'Jan').
Parameters:
M (int) : Month in numerical integer format (i.e. Jan=1).
Returns: Month in MMM format (i.e. 'Jan').
array2string(S, FWD)
Converts a string array to a simple string, concatenating its elements.
Parameters:
S (string ) : String array, or string array slice, to turn into a simple string.
FWD (bool) : Boolean defaulted to True. If True the array will be concatenated from head to tail, reversed order if False.
Returns: Returns the simple string equivalent of the provided string array.
month2number(M)
Converts a month string in 'MMM' format to its integer equivalent.
Parameters:
M (string) : Month string, in 'MMM' format.
Returns: Returns the integer equivalent of the provided Month string in 'MMM' format.
shiftFWD_Days(D)
Shifts forward the current Date by N days.
Parameters:
D (int) : Number of days to forward-shift, default is 7.
Returns: Returns the forward-shifted date in 'MMM %D' format (i.e. Jan 8, Sep 12).
ff_dow(D)
Converts a numbered day of the week string in format to 'DDD' format (i.e. "1" = Sun).
Parameters:
D (string) : Numbered day of the week from 1 to 7, starting on Sunday.
Returns: Returns the day of the week in 'DDD' format (i.e. "Fri").
ff_currency(C)
Converts a numbered currency string in format to 'CCC' format (i.e. "1" = AUD).
Parameters:
C (string) : Numbered currency, where "1" = "AUD", "2" = "CAD", "3" = "CHF", "4" = "CNY", "5" = "EUR", "6" = "GBP", "7" = "JPY", "8" = "NZD", "9" = "USD".
Returns: Returns the currency in 'CCC' format (i.e. "USD").
ff_t(T)
Converts a time of the day in 'hhmm' format into an intger.
Parameters:
T (string) : Time of the day string in 'hhmm' format.
Returns: Returns the time of the day integer in 'hhmm' format, or -1 if all day.
ff_tod(T)
Converts a time of the day from an integer 'hhmm' format into 'hh:mm' format.
Parameters:
T (int)
Returns: Returns the N Forex Factory News array with time of the day string in 'hh:mm' format, or 'All Day'.
ff_impact(I)
Converts a number from 1 to 4 to a relative color based on Forex Factory Impact types.
Parameters:
I (string) : Impact number string from 1 to 4, where "1" = Holiday, "2" = Low Impact, "3" = Medium Impact, "4" = High Impact.
Returns: Returns the color associated to the impact number based on Forex Factory Impact types.
ff_tmst(D, T)
Parameters:
D (string)
T (string)
decode(ID)
Decodes TOODEGREES_FOREX_FACTORY_SLOT_n Symbols' Pine Seeds data into Forex Factory News Events.
Parameters:
ID (int) : Identifier of the Forex Factory News Event, in "DCHHMMI%T" format (D = day of the week from 1 to 7, C = currency from 1 to 9, HHMM = hour:minute in 24h, I = impact from 1 to 4, %T = event title ID) .
Returns: Returns the Forex Factory News Event.
method pullNews(N, n)
Decodes the Forex Factory News Event and adds it to the Forex Factory News array.
Namespace types: ffUtil.News
Parameters:
N (News type from toodegrees/forex_factory_utility/1) : Forex Factory News array.
n (float) : imported data from custom feed.
Returns: void
method readNews(N, S)
Pulls the individual Forex Factory News Event from the custom data feed format (joint News string), decodes them and adds them to the Forex Factory News array.
Namespace types: ffUtil.News
Parameters:
N (News type from toodegrees/forex_factory_utility/1) : Forex Factory News array.
S (string) : joint string of the imported data from custom feed.
Returns: void
marketClosed(N, S, S1, S2, S3, S4, S5, S6, S7, S8, S9)
If the current ticker's market is closed, Pine Seeds data will be pushed twice upon new day. This function saves the data pushed from the missing day.
Parameters:
N (News type from toodegrees/forex_factory_utility/1) : Forex Factory News array.
S (string ) : String array containing the Pine Seeds daya from the missing day.
S1 (string) : Data coming from TOODEGREES_FOREX_FACTORY_SLOT_1.
S2 (string) : Data coming from TOODEGREES_FOREX_FACTORY_SLOT_2.
S3 (string) : Data coming from TOODEGREES_FOREX_FACTORY_SLOT_3.
S4 (string) : Data coming from TOODEGREES_FOREX_FACTORY_SLOT_4.
S5 (string) : Data coming from TOODEGREES_FOREX_FACTORY_SLOT_5.
S6 (string) : Data coming from TOODEGREES_FOREX_FACTORY_SLOT_6.
S7 (string) : Data coming from TOODEGREES_FOREX_FACTORY_SLOT_7.
S8 (string) : Data coming from TOODEGREES_FOREX_FACTORY_SLOT_8.
S9 (string) : Data coming from TOODEGREES_FOREX_FACTORY_SLOT_9.
Returns: Updated string array containing the Pine Seeds daya from the missing day.
forex_factory_events_id_BLibrary "forex_factory_events_id_B"
Supporting Utility Library for the Live Economic Calendar by toodegrees Indicator; database with the second 500 Forex Factory News Event types.
ff_titleB(ID)
Converts a number to Forex Factory News title (second 500).
Parameters:
ID (string) : Identifier of the Forex Factory News Event. Please see the library for more information.
Returns: Returns the title of the Forex Factory News Event.