Laguerre Timeframe OscillatorLaguerre Timeframe Breadth Oscillator
Multi-timeframe × multi-gamma Laguerre breadth model
────────────────────────
Usage Notes
────────────────────────
• This is a regime & consensus indicator, not a trigger
• Best used for trend validation and risk filtering
• Extreme values tend to persist during strong regimes
This indicator answers a single question:
“Out of 198 independent Laguerre filters, how many are currently rising?”
────────────────────────
Concept
────────────────────────
Using Laguerre polynomials, we aggregate price behavior across:
• 11 explicit timeframes (1-minute → 1-day)
• 18 gamma responsiveness levels (0.10 → 0.95)
This produces 198 independent Laguerre curves.
The final oscillator is NOT price.
It represents a directional consensus across timescales and smoothing sensitivities.
────────────────────────
Laguerre Filter Mathematics
────────────────────────
For each Laguerre line i:
L0ᵢ(t) = (1 − γᵢ) · x(t) + γᵢ · L0ᵢ(t−1)
L1ᵢ(t) = −γᵢ · L0ᵢ(t) + L0ᵢ(t−1) + γᵢ · L1ᵢ(t−1)
L2ᵢ(t) = −γᵢ · L1ᵢ(t) + L1ᵢ(t−1) + γᵢ · L2ᵢ(t−1)
L3ᵢ(t) = −γᵢ · L2ᵢ(t) + L2ᵢ(t−1) + γᵢ · L3ᵢ(t−1)
Smoothed output:
Yᵢ(t) = ( L0ᵢ + 2·L1ᵢ + 2·L2ᵢ + L3ᵢ ) / 6
This weighted sum smooths noise while preserving phase better than a traditional EMA.
────────────────────────
Gamma Responsiveness
────────────────────────
Gamma controls responsiveness vs stability:
0.10 — Very fast, noisy
0.40 — Momentum-sensitive
0.70 — Trend-stable
0.95 — Very slow, structural
Each timeframe is evaluated across all gamma levels.
────────────────────────
Timeframes Used (11)
────────────────────────
Minutes: 1, 3, 5, 10, 15, 30, 45
Hours: 1, 2, 4
Days: 1
────────────────────────
Direction Test
────────────────────────
Each Laguerre line votes “up” or “down”:
Iᵢ(t) = 1 if Yᵢ(t) > Yᵢ(t−1)
Iᵢ(t) = 0 otherwise
────────────────────────
Breadth Calculation
────────────────────────
greenCount(t) =
I₁(t) + I₂(t) + I₃(t) + … + I₁₉₈(t)
Total number of rising Laguerre filters.
────────────────────────
Centered Breadth Oscillator
────────────────────────
oscRaw(t) = greenCount(t) − 99
(99 = half of 198; zero represents balanced breadth)
────────────────────────
Smoothing & Amplification
────────────────────────
EMA smoothing:
oscSmooth(t) = EMA₁₀₀(oscRaw)
Extreme emphasis:
oscExtreme(t) = 2 · oscSmooth(t)
────────────────────────
Clamped Final Output
────────────────────────
osc(t) = max( −99 , min( 99 , oscExtreme(t) ) )
Range:
• −99 → all filters falling
• 0 → mixed / neutral
• +99 → all filters rising
────────────────────────
Optional Probabilistic Interpretation
────────────────────────
p(t) = greenCount(t) / 198
Interpretable as the probability of upward directional alignment.
Reach out on Discord if you need further guidance. - Coño Vista
Pine Script®指標






















