import pandas as pd
import matplotlib.pyplot as plt
# Sample stock price data
data = {
'Date': ['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04', '2024-01-05'],
'Price': [100, 102, 98, 105, 110]
}
# Convert data to DataFrame
df = pd.DataFrame(data)
# Calculate 50-day moving average
df['MA_50'] = df['Price'].rolling(window=50).mean()
# Plotting
plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['Price'], label='Price')
plt.plot(df['Date'], df['MA_50'], label='50-day MA')
plt.xlabel('Date')
plt.ylabel('Price')
plt.title('Stock Price with 50-day Moving Average')
plt.legend()
plt.show()
import matplotlib.pyplot as plt
# Sample stock price data
data = {
'Date': ['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04', '2024-01-05'],
'Price': [100, 102, 98, 105, 110]
}
# Convert data to DataFrame
df = pd.DataFrame(data)
# Calculate 50-day moving average
df['MA_50'] = df['Price'].rolling(window=50).mean()
# Plotting
plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['Price'], label='Price')
plt.plot(df['Date'], df['MA_50'], label='50-day MA')
plt.xlabel('Date')
plt.ylabel('Price')
plt.title('Stock Price with 50-day Moving Average')
plt.legend()
plt.show()
免責聲明
這些資訊和出版物並不意味著也不構成TradingView提供或認可的金融、投資、交易或其他類型的意見或建議。請在使用條款閱讀更多資訊。
免責聲明
這些資訊和出版物並不意味著也不構成TradingView提供或認可的金融、投資、交易或其他類型的意見或建議。請在使用條款閱讀更多資訊。