alexgrover

Kaufman Adaptive Least Squares Moving Average

Introduction

It is possible to use a wide variety of filters for the estimation of a least squares moving average , one of the them being the Kaufman adaptive moving average ( KAMA ) which adapt to the market trend strength, by using KAMA in an lsma we therefore allow for an adaptive low lag filter which might provide a smarter way to remove noise while preserving reactivity.

The Indicator

The lsma aim to minimize the sum of the squared residuals, paired with KAMA we obtain a great adaptive solution for smoothing while conserving reactivity. Length control the period of the efficiency ratio used in KAMA , higher values of length allow for overall smoother results. The pre-filtering option allow for even smoother results by using KAMA as input instead of the raw price.


The proposed indicator without pre-filtering in green, a simple moving average in orange , and a lsma with all of them length = 200. The proposed filter allow for fast and precise crosses with the moving average while eliminating major whipsaws.


Same setup with the pre-filtering option, the result are overall smoother.

Conclusion

The provided code allow for the implementation of any filter instead of KAMA , try using your own filters. Thanks for reading :)

Patreon: www.patreon.com/alexgrover

Become a Patreon and get access to exclusive technical indicators!

You can also check out some of the indicators I made for luxalgo : www.tradingview.com/u/LuxAlgo/
開源腳本

本著真正的TradingView精神,該腳本的作者將其開源發布,以便交易者可以理解和驗證它。為作者喝彩吧!您可以免費使用它,但在出版物中重複使用此代碼受網站規則的約束。 您可以收藏它以在圖表上使用。

免責聲明

這些資訊和出版物並不意味著也不構成TradingView提供或認可的金融、投資、交易或其他類型的意見或建議。請在使用條款閱讀更多資訊。

想在圖表上使用此腳本?