OPEN-SOURCE SCRIPT
Z-Score

The z-score (also known as the standard score) measures how many standard deviations a data point is from the mean of a dataset. It helps determine whether a data point is typical or unusual compared to the dataset.
The formula for the z-score is:
z = \frac{x - \mu}{\sigma}
Where:
• x = the value being evaluated
• \mu = the mean of the dataset
• \sigma = the standard deviation of the dataset
Interpretation:
• A positive z-score indicates the data point is above the mean.
• A negative z-score indicates the data point is below the mean.
• A z-score of 0 means the data point is exactly at the mean.
The formula for the z-score is:
z = \frac{x - \mu}{\sigma}
Where:
• x = the value being evaluated
• \mu = the mean of the dataset
• \sigma = the standard deviation of the dataset
Interpretation:
• A positive z-score indicates the data point is above the mean.
• A negative z-score indicates the data point is below the mean.
• A z-score of 0 means the data point is exactly at the mean.
開源腳本
本著TradingView的真正精神,此腳本的創建者將其開源,以便交易者可以查看和驗證其功能。向作者致敬!雖然您可以免費使用它,但請記住,重新發佈程式碼必須遵守我們的網站規則。
免責聲明
這些資訊和出版物並不意味著也不構成TradingView提供或認可的金融、投資、交易或其他類型的意見或建議。請在使用條款閱讀更多資訊。
開源腳本
本著TradingView的真正精神,此腳本的創建者將其開源,以便交易者可以查看和驗證其功能。向作者致敬!雖然您可以免費使用它,但請記住,重新發佈程式碼必須遵守我們的網站規則。
免責聲明
這些資訊和出版物並不意味著也不構成TradingView提供或認可的金融、投資、交易或其他類型的意見或建議。請在使用條款閱讀更多資訊。