OPEN-SOURCE SCRIPT
已更新 Function - Kernel Density Estimation (KDE)

"In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function of a random variable."
from wikipedia.com
KDE function with optional kernel:
Republishing due to change of function.
deprecated script:
from wikipedia.com
KDE function with optional kernel:
- Uniform
- Triangle
- Epanechnikov
- Quartic
- Triweight
- Gaussian
- Cosinus
Republishing due to change of function.
deprecated script:

發行說明
added quartic and triweight kernels.發行說明
- added placeholder for kernels(logistic, sigmoid, silverman)
- added kernel calculations for kernel(uniform, triangular, cosine)
發行說明
added calculations for kernels(logistic, sigmoid and silverman(Not working atm)發行說明
removed silverman kernel, added highest value index line/label, nearest to 0 index as a dotted gray line.發行說明
added extra stats/visuals to drawing function.免責聲明
這些資訊和出版物並不意味著也不構成TradingView提供或認可的金融、投資、交易或其他類型的意見或建議。請在使用條款閱讀更多資訊。