OPEN-SOURCE SCRIPT

Function - Kernel Density Estimation (KDE)

已更新
"In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function of a random variable."
from wikipedia.com

KDE function with optional kernel:
  • Uniform
  • Triangle
  • Epanechnikov
  • Quartic
  • Triweight
  • Gaussian
  • Cosinus


Republishing due to change of function.
deprecated script:
KDE-Gaussian
發布通知
added quartic and triweight kernels.
發布通知
  • added placeholder for kernels(logistic, sigmoid, silverman)
  • added kernel calculations for kernel(uniform, triangular, cosine)
發布通知
added calculations for kernels(logistic, sigmoid and silverman(Not working atm)
發布通知
removed silverman kernel, added highest value index line/label, nearest to 0 index as a dotted gray line.
發布通知
added extra stats/visuals to drawing function.
estimationfunctionkdekernelTrend Analysis

開源腳本

在真正的TradingView精神中,這個腳本的作者以開源的方式發佈,這樣交易員可以理解和驗證它。請向作者致敬!您可以免費使用它,但在出版物中再次使用這段程式碼將受到網站規則的約束。 您可以收藏它以在圖表上使用。

想在圖表上使用此腳本?

免責聲明