lejmer

OrdinaryLeastSquares

Library "OrdinaryLeastSquares"
One of the most common ways to estimate the coefficients for a linear regression is to use the Ordinary Least Squares (OLS) method.
This library implements OLS in pine. This implementation can be used to fit a linear regression of multiple independent variables onto one dependent variable,
as long as the assumptions behind OLS hold.

solve_xtx_inv(x, y) Solve a linear system of equations using the Ordinary Least Squares method.
This function returns both the estimated OLS solution and a matrix that essentially measures the model stability (linear dependence between the columns of 'x').
NOTE: The latter is an intermediate step when estimating the OLS solution but is useful when calculating the covariance matrix and is returned here to save computation time
so that this step doesn't have to be calculated again when things like standard errors should be calculated.
  Parameters:
    x: The matrix containing the independent variables. Each column is regarded by the algorithm as one independent variable. The row count of 'x' and 'y' must match.
    y: The matrix containing the dependent variable. This matrix can only contain one dependent variable and can therefore only contain one column. The row count of 'x' and 'y' must match.
  Returns: Returns both the estimated OLS solution and a matrix that essentially measures the model stability (xtx_inv is equal to (X'X)^-1).

solve(x, y) Solve a linear system of equations using the Ordinary Least Squares method.
  Parameters:
    x: The matrix containing the independent variables. Each column is regarded by the algorithm as one independent variable. The row count of 'x' and 'y' must match.
    y: The matrix containing the dependent variable. This matrix can only contain one dependent variable and can therefore only contain one column. The row count of 'x' and 'y' must match.
  Returns: Returns the estimated OLS solution.

standard_errors(x, y, beta_hat, xtx_inv) Calculate the standard errors.
  Parameters:
    x: The matrix containing the independent variables. Each column is regarded by the algorithm as one independent variable. The row count of 'x' and 'y' must match.
    y: The matrix containing the dependent variable. This matrix can only contain one dependent variable and can therefore only contain one column. The row count of 'x' and 'y' must match.
    beta_hat: The Ordinary Least Squares (OLS) solution provided by solve_xtx_inv() or solve().
    xtx_inv: This is (X'X)^-1, which means we take the transpose of the X matrix, multiply that the X matrix and then take the inverse of the result.
This essentially measures the linear dependence between the columns of the X matrix.
  Returns: The standard errors.

estimate(x, beta_hat) Estimate the next step of a linear model.
  Parameters:
    x: The matrix containing the independent variables. Each column is regarded by the algorithm as one independent variable. The row count of 'x' and 'y' must match.
    beta_hat: The Ordinary Least Squares (OLS) solution provided by solve_xtx_inv() or solve().
  Returns: Returns the new estimate of Y based on the linear model.
發布通知:
v2

Updated:
solve(x, y)
  Solve a linear system of equations using the Ordinary Least Squares method.
  Parameters:
    x: The matrix containing the independent variables. Each column is regarded by the algorithm as one independent variable. The row count of 'x' and 'y' must match.
    y: The array containing the dependent variable. The row count of 'x' and the size of 'y' must match.
  Returns: Returns the estimated OLS solution.
Pine腳本庫

本著真正的TradingView精神,作者將此Pine代碼以開源腳本庫發布,以便我們社群的其他Pine程式設計師可以重用它。向作者致敬!您可以私下或在其他開源出版物中使用此庫,但在出版物中重用此代碼受網站規則約束。

免責聲明

這些資訊和出版物並不意味著也不構成TradingView提供或認可的金融、投資、交易或其他類型的意見或建議。請在使用條款閱讀更多資訊。

想使用這個腳本庫嗎?

複製以下行並將其黏貼到您的腳本中。