Bodedo

TEDong Velocity/Acceleration: Physics Newton Law

Hi Folg,

In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.
Kinematics motion is simpler as it concerns only variables derived from the positions of objects, and time. In circumstances of constant acceleration, these simpler equations of motion are usually referred to as the SUVAT equations, arising from the definitions of kinematic quantities: displacement (s), initial velocity (u), final velocity (v), acceleration (a), and time (t).

A differential equation of motion, usually identified as some physical law and applying definitions of physical quantities, is used to set up an equation for the problem. Solving the differential equation will lead to a general solution with arbitrary constants, the arbitrariness corresponding to a family of solutions. A particular solution can be obtained by setting the initial values, which fixes the values of the constants. To state this formally, in general an equation of motion M is a function of the position r of the object, its velocity (the first time derivative of r, v = dr/dt
), and its acceleration (the second derivative of r, a = d2r/dt2), and time t.


The following indikator is called TEDong Velocity/Acceleration, with alert LONG/BUY and SHORT/Sell.


DONATE/TIP

BTC: 13nhMN2H4LoRi4VMcPcyR96jitxrH3uivB
受保護腳本
該腳本是閉源發佈的,您可以自由使用。您可以把它加入到常用以在圖表上使用它。您無法查看或修改其原始碼。
免責聲明

這些資訊和出版物並不意味著也不構成TradingView提供或認可的金融、投資、交易或其他類型的意見或建議。請在使用條款閱讀更多資訊。

想在圖表上使用此腳本?