OPEN-SOURCE SCRIPT
已更新

KDE-Gaussian

5768
"In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function of a random variable."
from wikipedia.com
發行說明
fixed a issue when using float type observations.
added a draw function to draw the KDE graph(you need to see all the bar history to see it, doesnt work for float observations)
發行說明
removed some redundant parameters, added bandwidth, nstep parameters, the graph looks stepd due to x axis havin interdigit floating numbers so it rounds to nearest causing that effect.
發行說明
improved the kde draw function

免責聲明

這些資訊和出版物並不意味著也不構成TradingView提供或認可的金融、投資、交易或其他類型的意見或建議。請在使用條款閱讀更多資訊。